
Benchmarking Spreadsheet Systems
Sajjadur Rahman

University of Illinois (UIUC)
srahman7@illinois.edu

Kelly Mack∗
University of Washington

knmack3@uw.edu

Mangesh Bendre∗
VISA Research

mbendre@visa.com

Ruilin Zhang∗
University of Southern California

rzhang74@usc.edu

Karrie Karahalios
University of Illinois (UIUC)

kkarahal@illinois.edu

Aditya Parameswaran∗
University of California, Berkeley

adityagp@berkeley.edu

ABSTRACT
Spreadsheet systems are used for storing and analyzing data
across domains by programmers and non-programmers alike.
While spreadsheet systems have continued to support in-
creasingly large datasets, they are prone to hanging and freez-
ing while performing computations even on much smaller
ones. We present a benchmarking study that evaluates and
compares the performance of three popular systems, Mi-
crosoft Excel, LibreOffice Calc, and Google Sheets, on a range
of canonical spreadsheet computation operations. We find
that spreadsheet systems lack interactivity for several opera-
tions, on datasets well below their advertised scalability lim-
its. We further evaluate whether spreadsheet systems adopt
database optimization techniques such as indexing, intelli-
gent data layout, and incremental and shared computation,
to efficiently execute computation operations. We outline
several ways future spreadsheet systems can be redesigned
to offer interactive response times on large datasets.

CCS CONCEPTS
• Information systems→ Data management systems.

KEYWORDS
Spreadsheet systems; Scalability; Use cases
ACM Reference Format:
Sajjadur Rahman, Kelly Mack, Mangesh Bendre, Ruilin Zhang, Kar-
rie Karahalios, and Aditya Parameswaran. 2020. Benchmarking
Spreadsheet Systems. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD’20), June

∗This work began when these authors were part of the University of Illinois.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3389782

14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3318464.3389782

1 INTRODUCTION
Spreadsheets are everywhere—we use them for managing
our class grades, our daily food habits, scientific experiments,
real-estate developments, financial portfolios, and even fan-
tasy football scores [18]. Recent estimates from Microsoft
peg spreadsheet use at about 1

10
th of the world’s population.

Responding to user demands, spreadsheet systems now ad-
vertise support for increasingly large datasets. For example,
Microsoft Excel supports more than 10s of billions of cells
within a spreadsheet [22]. Even web-based Google Sheets
now supports five million cells [10], a 12.5X increase from
its previous limit of 400K cells. With increasing data sizes,
however, spreadsheets have started to break down to the
point of being unusable, displaying a number of scalability
problems. They often freeze during computation, and are
unable to import datasets well below their advertised size
limits. Anecdotes from a recent paper report that computa-
tion on spreadsheets with as few as 20,000 rows can lead to
hanging and freezing [18]. Further, importing a spreadsheet
of 100,000 rows in Excel (10% of the size limit of one million
rows) can take over 10 minutes [1].
These anecdotes beg the following questions: How are

spreadsheets actually implemented? For what sorts of oper-
ations and workloads do they return responses in interactive
time-scales?When do they exhibit delays, become non-responsive,
or crash? How do they perform when data and operations scale
up? Do they employ “database-style” optimizations to support
large datasets, such as query planning and optimization, in-
dexing, or materialization? These are important questions,
since answering these questions can help make spreadsheet
systems more usable, on large and complex datasets that
are increasingly the norm. Unfortunately, it is hard for us
to compare the internals of popular spreadsheet systems
such as Microsoft Excel and Google Sheets, since they are
closed-source. Online documentation about these systems
is restricted to help manuals as opposed to architectural de-
tails. Our best proxy for understanding how spreadsheet
systems work is to use a familiar and time-tested approach
from databases: benchmarking. Benchmarking has been the

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1589

https://doi.org/10.1145/3318464.3389782
https://doi.org/10.1145/3318464.3389782

cornerstone of database systems research, allowing us to
measure progress on several problems, e.g., transaction pro-
cessing [14], data analysis [26], and cloud computing [3].
In this paper, we present, to the best of our knowledge,

the first benchmarking study of spreadsheet systems. We study
the following popular spreadsheet systems: Microsoft Excel
(Excel hereafter), Google Sheets, and LibreOffice Calc (Calc
hereafter). Excel is a closed-source desktop spreadsheet sys-
tem; Google Sheets is a web-based collaborative spreadsheet
system; and Calc is a open-source desktop spreadsheet sys-
tem. These systems were selected to provide a diversity in
terms of maturity (Excel is more mature), platform (desktop
vs. web-based), and openness (open vs. closed source).

We construct two different kinds of benchmarks to evalu-
ate these spreadsheet systems: basic complexity testing (BCT),
and optimization opportunities testing (OOT). We have re-
leased the source code for both of these benchmarks1.
Basic Complexity Testing (BCT). The BCT benchmark
aims to assess the performance of basic operations on spread-
sheets.We construct a taxonomy of operations—encapsulating
opening, structuring, editing, and analyzing data—based on
their expected time complexity, and evaluate the relative per-
formance of the spreadsheet systems on a range of data sizes.
Our goal is to understand the impact of the type of opera-
tion, the size of data being operated on, and the spreadsheet
system used, on the latency. Moreover, we want to quantify
when each spreadsheet system fails to be interactive for a
given operation, violating the 500ms mark widely regarded
as the bound for interactivity [17].
OptimizationOpportunities Testing (OOT). Spreadsheet
systems have continued to increase their size limits over the
past few decades [10, 22]. On the other hand, research on
data management has, over the past four decades, identified
a wealth of techniques for optimizing the processing of large
datasets. We wanted to understand whether spreadsheet
systems take advantage of techniques such as indexes, incre-
mental updates, workload-aware data layout, and sharing of
computation. The OOT benchmark constructs specific sce-
narios to explorewhether such optimizations are deployed by
existing spreadsheet systems while performing spreadsheet
formula computation. Our goal is to identify new opportu-
nities for improving the design of spreadsheet systems to
support computation on large datasets.
BenchmarkConstruction.Constructing these benchmarks
and performing the evaluationwas not straightforward. There
were three primary challenges we had to overcome: interac-
tion effects, implementation, and coverage.
1. Interaction effects. Unlike typical database benchmarking
settingswhere there is a clear separation between the datasets
and the queries, here the datasets and queries are mixed,

1https://github.com/dataspread/spreadsheet-benchmark

since the computation is embedded on the spreadsheet as for-
mulae alongside the data. Thus, there are interaction effects—
any change on the spreadsheet, in addition to triggering
the computation of the operation (or formula) being bench-
marked, may also trigger the recomputation of other embed-
ded formulae. To isolate the impact of embedded formulae,
we operate on real-world datasets containing both formulae
and raw data, as well as datasets with raw data only.
2. Implementation. Making a change to or performing an op-
eration on the spreadsheet and measuring the time manually
does not provide high accuracy times. Instead, we had to
programmatically make changes to the sheet and measure
the corresponding time(s). Unfortunately, all three systems:
Excel, Google Sheets, and Calc, embed slightly different pro-
gramming (macro) languages for this purpose, requiring an
implementation from scratch for each system, for each op-
eration. For Calc, the documentation for this language is
minimal, requiring us to look at online forums for assistance.
Additional challenges emerged with Google Sheets, since the
variance in response times for certain operations was very
high—possibly due to the variable load on the server where
the operation is being performed.
3. Coverage. Spreadsheet systems support a wide variety
of operations—e.g., over 400 operations according to this
source [21]—making it difficult to evaluate each operation
individually. Instead, we classified the operations into sev-
eral categories based on their expected complexity, type of
inputs, and generated outputs, helping us perform targeted
evaluation for the BCT benchmark. For the OOT benchmark,
on the other hand, we relied on our creativity in identifying
settings where “database-style” optimizations may be rele-
vant. We targeted a number of settings related to formula
execution, including accelerating the execution of a single
formula at-a-time via indexing, incremental view updates,
and intelligent data layouts, as well as that of multiple for-
mulae, via pruning of redundant computation, and sharing
of partial results.
Takeaways. Here are some interesting takeaways from our
evaluation:
A. Spreadsheets are not interactive for many standard opera-
tions, even for as few as 50k rows. Spreadsheet systems often
fail to return responses in interactive time-scales (i.e., 500ms)
for datasets well below their documented scalability limits;
see Table 2 that depicts when each system becomes non-
interactive for a given operation in our benchmark (described
later). For example, both the desktop-based spreadsheets and
Google Sheets allow importing of datasets with one million
rows and five million cells, respectively. However, all three
spreadsheet systems, i.e., Excel, Calc, and Google Sheets, re-
quire more than 500ms to sort a spreadsheet with 10k, 6k,
and 10k rows, respectively. Even when computing a simple
aggregate operation like COUNTIF, Calc and Google Sheets

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1590

violate the interactivity bound on a spreadsheet with 110k,
and 10k rows, respectively.
B. Spreadsheet systems, for the most part, do not employ any
database-style optimizations. Apart from a lookup operation
on sorted data in Excel, our benchmarking experiments do
not reveal any evidence of spreadsheet systems adopting
relational database-style optimizations. Some egregious ex-
amples include the fact that (1) recomputing a formula due
to a single cell update (an O(1) operation if incremental view
update is used), requires the same time as computing the
formula from scratch; (2) n repeated instances of the exact
same formula take O(n) time instead of the formula being
computed once and the results being reused; (3) “finding” a
nonexistent value (e.g., via find-and-replace) takes O(n) time
where n is the size of the data

2 BENCHMARK SETUP
We first provide a brief overview of the spreadsheet systems
that we are benchmarking, namely, Excel, Calc, and Google
Sheets. Next, we describe a taxonomy that groups spread-
sheet operations into high level categories. The taxonomy
enables us to perform targeted benchmarking of representa-
tive operations within each category. We then explain the
datasets used and the experimental settings for the systems
being benchmarked.

2.1 Spreadsheet Systems Overview
We evaluate three popular systems: Excel and Calc, which
are both desktop-based (and operate on MacOS and Win-
dows, unlike Numbers, which only operates on MacOS), and
Google Sheets, which is web-based. Excel, part of the Office
365 suite [25], is the most popular desktop-based spreadsheet
system, boasting about 700M registered users [24]. Excel can
support up to 1M rows and 17,000 columns in a given spread-
sheet [22]. Calc is an open-source spreadsheet system used by
two office software suites, OpenOffice and LibreOffice [32],
and can support up to one million rows per spreadsheet [31].
Google Sheets, part of G suite [8], is the most popular web-
based spreadsheet system, with users numbering in the 100s
of millions [30]. Google Sheets supports up to five million
cells per spreadsheet [10]. A detailed overview of these sys-
tems can be found in the techreport [29]. We also assume
that readers are familiar with basic spreadsheet concepts,
such as cells and formulae, and the fact that spreadsheet
computation is synchronous, leading to performance issues
as documented in recent work [2, 18]—for a primer, see [29].

2.2 Taxonomy of Spreadsheet Operations
We first group spreadsheet operations into three categories:
data load, update, and query as shown in Table 1. We omit
simple operations such as addition/subtraction, which are
O(1). Here, we briefly explain the high level categories, and
defer a detailed discussion for the next section.

Data load operations involve loading data from disk (desktop-
based systems) or a server (web-based systems). Two opera-
tions that fall under this category are import of a file into a
spreadsheet and open of an existing spreadsheet.
Update operations change the content or style (or both) of
spreadsheet cells. Depending on their goals, different opera-
tions may update a few cells at a time, e.g., find and replace
or conditional formatting, or an entire range of cells, e.g.,
sort, copy-paste.
Query operations involve different statistical, arithmetic,
data organization, summarization, and lookup formulae. We
divide the query operations into four sub-categories: select,
report, aggregate, and lookup.

2.3 Dataset
Following a university-wide survey that yielded 26 responses,
we selected the largest real-world spreadsheet that was sub-
mitted—a spreadsheet on weather data across the states in
US, containing 50000 rows and 17 columns. Cells within
seven of those columns contained COUNTIF formulae. Each
formula counts the presence of a value (natural disaster) in
the corresponding cell of a preceding column, e.g., the for-
mula at cell k2 is: “=COUNTIF(C2,“STORM”)”, evaluating to
0 or 1. We selected a real dataset to ensure that the orga-
nization of data and the ratio of formulae to values within
the spreadsheet are both representative. Using this dataset
as the starting point, we created various synthetic datasets
and settings to evaluate different categories of spreadsheet
operations and accommodate different dimensions of the
benchmarking experiments. We repeated our experiments
with other typical spreadsheet datasets as a starting point
(see [29] for benchmarking results on other datasets), and
we did not learn any new insights; so, we focus our attention
on this dataset, and consider a number of its variations to
stress-test various operations.

We first created a scaled-up version of the weather dataset,
called Formula-value (F for short). This dataset has 500k
rows—10X the original dataset—where cells can contain ei-
ther formulae or values. As explained in Section 1, the embed-
ding of other formulae within a spreadsheet can influence the
outcomes of a specific experiment due to recomputation of
these embedded formulae. To isolate the effect of the embed-
ded formulae, we converted the Formula-value spreadsheet
to a value-only spreadsheet, called Value-only (V for short),
where any formulae were replaced by the corresponding
value. To evaluate how computation time varies with size,
we created 51 different versions of Value-only and Formula-
value with increasing row sizes simulating input ranges. The
number of columns in each dataset was fixed. We created
multiple dataset versions (51) by uniformly sampling rows
based on the state column of the 500k rows dataset. The two
smallest dataset versions contained 150 and 6000 rows. For
the rest of the 49 dataset versions, the number of rows were

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1591

Table 1: Categorizing Spreadsheet Operations. For input type “Range”, there arem rows and n columns.
Category Sub-category Example Input Output Expected Complexity
Data Load — Open, Import Filename Range (m × n) O(mn)

Update —

Find and Replace Range (m × n), Value X and Y Updated cells O(mn)
Copy-Paste Range (m × n) Range (m × n) O(mn)
Sort Range (m × n) Range (m × n) O(m logm)
Conditional Formatting Range (m × n), Condition Updated cells O(mn)

Query

Select Filter Range (m × n), Condition List O(mn)
Report Pivot Table Range (m × n), Condition Aggregate Table O(mn)

Aggregate SUM,AVG,COUNT Range (m × n) Value O(mn)
Conditional Variants Range (m × n), Condition Value O(mn)

Lookup Vlookup, Switch Range X (mx × nx) Value O(mxnxmyny)
Value, Range Y (my × ny)

Ni = 10000 + (i − 3) × 10000, where i = 3, 4, 5, . . . , 51. We
provide further details on dataset creation in [29].

2.4 Settings
For the desktop-based spreadsheet systems, we conducted
all the experiments on a Dell Precision 490 workstation with
Intel Xeon E5335 2.0GHz CPU and 16GB RAM running 64 bit
versions of Windows 10 and Ubuntu 16.04. The Excel-based
experiments were conducted with Microsoft Excel 2016 run-
ning on Windows, while the Calc-based experiments were
conducted on LibreOffice Calc 6.0.3.2 running on Ubuntu.
The Google Sheets-based experiments were run on a uni-
versity allocated G Suite account. For all three spreadsheet
systems, we implemented the experiments in their corre-
sponding scripting language, i.e., Visual basic (VBA) for Excel,
Calc basic for Calc, and Google apps script (GAS) for Google
Sheets. All the experiments were single threaded. Note that
Excel 2016 can be configured to support multi-threaded re-
calculation of formulae [23]. However, the default setting is
to evaluate a formula on the main thread of Excel.
For each experiment in Excel, we first created an Excel

Macro-Enabled Workbook (xlsm) [34] which can execute em-
bedded macros programmed in VBA. Unlike Excel, LibreOf-
fice Calc macros, programmed in Calc Basic, can be enabled
and executed from the default workbook—OpenSpreadsheet
Document (ods) [33]. We created the Google App Scripts in
G Suite Developer Hub [9]. Given an experiment, all three
scripting languages can invoke a formula, e.g., COUNTIF, or
operation, e.g., sort, for their respective systems via an API
call. We used default library functions of the corresponding
scripting languages to measure the execution time of each
experimental trial. For each experiment, we passed the file
path of the relevant datasets as an argument for the scripts
(macros) of the desktop-based systems, and a URL for GAS
in Google Sheets. All the datasets used in the Excel and Calc-
based experiments were in xlsx and ods format, respectively.
The datasets used in the Google Sheets experiments were
uploaded as xlsx files and then manually converted to Google
Sheets from the Google Drive menu.
For each experiment, we ran ten trials and measured the

running time. We report the average run time of eight trials
while removing the maximum and minimum reported time.
Note that for experiments with Google Sheets, we restricted
the maximum size of the data to 90k rows to fit in the exper-
iment trials for different test cases within the allocated daily
quotas imposed by Google Apps Script services. Moreover,

we display error bars for the Google Sheets experiments as
the trends exhibited higher variances across trials. Repeating
these experiments with various settings, e.g., randomization
of trials or using a unique sheet per trial, reduced the vari-
ance while exhibiting similar trends. These experiments with
lower variance, as well as other experiments we tried are
detailed in our techreport [29].

3 BCT BENCHMARK
The BCT benchmark is designed to quantify the impact of
three aspects on the latency of an operation: (a) type of
operation, (b) size of data operated on, and (c) spreadsheet
system used. For each experiment, we select a representative
operation from each category in Table 1. Given an operation,
we gradually increase the data size being operated on, record
the time taken to complete the operation for each system, and
compare the observed time complexity with the expected one.
We further evaluate when, if at all, the execution time for a
given formula violates the interactivity bound of 500ms [17].
We denote the number of rows and columns in a spreadsheet
bym and n, respectively. In our experiments, we typically
varym while keeping n fixed. Therefore, we expect the time
complexity of a formula to vary with row count, m. See
technical report [29] for more details.

3.1 Data Load Operations
The open operation loads an existing spreadsheet from disk
to memory. We document the time to open Formula-value
(F) and Value-only (V) datasets, while varying row sizes
m, wherem = 150, 6k, 10k, 20k , . . . , 500k . As we keep the
number of columns fixed, the expected complexity is O(m).

0 100K 200K 300K 400K 500K

Rows

0

40

80

120

160

T
im

e
(s

)

Calc (F)
Calc (V)
Excel (F)
Excel (V)

0 10K 20K 30K 40K 50K 60K 70K 80K 90K

Rows

0.0

0.8

1.6

2.4

3.2

T
im

e
(s

)

Formula-Value
Value-Only

(a) Excel and Calc (b) Google Sheets
Figure 1: Open in Excel, Calc is slow; it is faster on Google Sheets due to lazy
loading of data not in the user window.

Observations. Figure 1a shows that the time taken by the
desktop-based spreadsheets is linear inm for both datasets.
On the other hand, in Google Sheets, the time to open the
Value-only spreadsheet is almost the same, independent of
the size of the dataset, i.e., O(1) (see Figure 1b). When open-
ing a spreadsheet for the first time, Google Sheets appears to

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1592

0 100K 200K 300K 400K 500K

Rows

0.000

0.015

0.030

0.045

0.060
T

im
e

(s
)

Formula-value
Value-only

0 100K 200K 300K 400K 500K

Rows

0.0

0.8

1.6

2.4

3.2

T
im

e
(s

)

Formula-value
Value-only

0 10K 20K 30K 40K 50K 60K 70K 80K 90K

Rows

0.00

0.25

0.50

0.75

1.00

T
im

e
(s

)

Formula-Value
Value-Only

(a) Excel (b) Calc (c) Google Sheets
Figure 2: While conditional formatting on Formula-value is slow for Calc and Google Sheets due to formula recomputation, no such recomputation is triggered
in Excel. Google Sheets is faster for Value-only due to formatting cells in a lazy fashion.

load the firstm rows visible within the screen, and then load the
rest on-demand as the user scrolls. However, Google Sheets
breaks the interactivity threshold of 500ms to load even a
screenful of data, possibly due to network or web render-
ing delays [11]. On the other hand, Excel and Calc violate
this bound while opening only 6000 and 150 row Value-only
datasets, respectively, well below their advertised scalabil-
ity limit of one million rows. The delay is even worse for
Formula-value datasets. The only difference between the
Formula-value and Value-only datasets is the presence of
embedded formulae. When the spreadsheet is opened, the
spreadsheet systems recalculate embedded formulae (as dis-
cussed in Excel documentation [20], but we expect other
systems are similar), and as the number of embedded formu-
lae increases, the latency of open increases as well.
Thus, beyond prioritizing loading the first “window” of

the spreadsheet, there are additional opportunities to reduce
the latency of data load by prioritizing formula computation
for the first window, done by no systems currently.

3.2 Update Operations
We now consider two update operations: conditional format-
ting and sort. We present the results for find-and-replace
along with the OOT benchmark results in Section 4.

3.2.1 Conditional Formatting. The conditional formatting
operation takes a data range and a conditional expression as
input and updates the style of the cells within the range that
satisfy the condition. We measured the time to execute an
operation to color cells in a column green if they contains
the value 1. The expected complexity for this experiment is
O(m), wherem is the row count.
Observations. Figure 2 shows that although Excel and Calc
exhibit a linear trend for Value-only datasets, Google Sheets
takes almost the same time to complete the operation irre-
spective of the size of the dataset. We again speculate that
Google Sheets updates the style of visible cells, doing the
rest lazily. Excel and Google Sheets complete the operation
within an interactive bound for both datasets. The values
of the cells being formatted for Formula-value datasets are
derived from formulae; the gap between Formula-value and
Value-only for Calc and Google Sheets may stem from an
unnecessary recomputation triggered by formatting.

0 100K 200K 300K 400K 500K

Rows

0

40

80

120

160

T
im

e
(s

)

Calc (F)
Calc (V)
Excel (F)
Excel (V)

0 10K 20K 30K 40K 50K

Rows

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
(s

)

Formula-Value
Value-Only

(a) Excel and Calc (b) Google Sheets
Figure 3: Sort on Formula-value is substantially worse than Value-only,
thanks to formula recomputation on sort.

3.2.2 Sort. In our experiments, we sort the data by a single
attribute—column A of unique integer values, with an ex-
pected complexity of O(m logm), wherem is the row count
(or size of dataset); see Figure 3.
Observations. The deceptively linear trend for sorting for
all systems is due to the size of the datasets used in our
experiments—even row sizem = 500k is not large enough for
the logarithmic factor to be pronounced for the O(m logm)

trend. Similar to data load operations, Excel, Calc, and
Google Sheets violate the interactivity bound for both Value-
only (70k, 10k, and 6k rows, respectively) and Formula-value
(10k, 150, and 10k rows, respectively). Again, the recom-
putation of embedded formulae increases the latency with
interactivity bounds violated much earlier—compared to the
Value-only dataset (70k), Excel breaks the bound with 7X
smaller Formula-value dataset (10k). In this case, the recom-
putation is wasted computation: here, formulae generate de-
rived columns and are specific or local to a row, and therefore
do not require a recomputation when the rows are sorted.

3.3 Query Operations
We now discuss the results for four query operation cate-
gories. Both the input and output of such operations can vary
(Table 1); inputs can include values, conditions, or ranges;
outputs can include values, ranges, lists, or aggregates.

3.3.1 Select (Filter). In this experiment, we filter a given
spreadsheet by state SD (South Dakota). We vary the row
count,m, and expect the run time to be linear inm.
Observations. As can be seen in Figure 4, all systems ex-
hibit a linear trend for Value-only. Excel completes the oper-
ation within 500ms for even for 500k row dataset. However,
Calc and Google Sheets violate the bound at 200k and 20k
datasets, respectively. Excel exhibits a super-linear trend for
Formula-value datasets and violates the 500ms bound at 40k

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1593

0 100K 200K 300K 400K 500K

Rows

0.0

2.5

5.0

7.5

10.0

T
im

e
(s

)

Calc (F)
Calc (V)
Excel (F)
Excel (V)

0 10K 20K 30K 40K 50K 60K 70K 80K 90K

Rows

0

2

4

6

8

T
im

e
(s

)

Formula-Value
Value-Only

(a) Excel and Calc (b) Google Sheets
Figure 4: Filter on Formula-value in Excel does unnecessary recomputation.
Google Sheets is slower than the other two.

rows (Figure 4a). Filtering likely triggers unnecessary formula
recalculation in Excel [20]. For Formula-value, the times for
Calc and Google Sheets is similar to Value-only, with inter-
activity violated at sizes 120k and 10k, respectively. Filter
likely does not trigger recalculation in these systems.

3.3.2 Report (Pivot Table). The pivot table operation [6]
creates a table with summary statistics (similar to a SQL
GROUP BY). In this experiment, we create a pivot table that
shows the sum of storms per state in a new worksheet.

0 100K 200K 300K 400K 500K

Rows

0

2

4

6

8

T
im

e
(s

)

Calc (F)
Calc (V)
Excel (F)
Excel (V)

0 10K 20K 30K 40K 50K 60K 70K 80K 90K

Rows

0.0

1.5

3.0

4.5

6.0

T
im

e
(s

)

Formula-Value
Value-Only

(a) Excel and Calc (b) Google Sheets
Figure 5: Calc is faster than the other two for Pivot Tables

Observations. Figure 5 demonstrates linear complexity for
both types of datasets. For Value-only datasets, Calc outper-
forms (330k rows) both Excel and Google Sheets—the latter
two violate interactivity at 50k and 20k rows, respectively.
Similar patterns emerge for Formula-value where Calc out-
performs (340k rows) Excel (50k rows) and Google Sheets
(10k). Moreover, while Calc is unaffected by embedded for-
mulae, both Excel and Google Sheets exhibit higher latency
for Formula-value. We hypothesize that insertion of a new
worksheet in the workbook triggers formula recomputation
for Excel and Google Sheets.

3.3.3 Aggregate operation. An aggregate formula, e.g., COUNT,
takes a range as input and then computes the aggregate of the
values within that range. The conditional variant of an aggre-
gate formula, e.g., COUNTIF, takes an additional condition as
input. Therefore, the aggregate operation is a special case of
pivot tables. Due to the similarity in experimental outcomes,
we discuss these results in our technical report [29].

3.3.4 Look Up. These operations look up a specific value X
within a given input range and returns the value of another
cell within the same rowwhereX was found, e.g., VLOOKUP. In
our experiment, we perform a VLOOKUP on column A search-
ing for an integer X and return the corresponding US state
for the row i such that Ai = X , where X = 200000. For all

systems, VLOOKUP takes an optional binary parameter, indi-
cating an approximate match (True) or an exact one (False).
In our experiment, we also varied this parameter to see how
the formula behaves with different search requirements. The
spreadsheet must be sorted for approximate match to work
properly; so we sorted the dataset by column A first.
Observations. Figure 6 shows that VLOOKUP times vary sig-
nificantly across systems. When the parameter is set to False,
i.e., exact match, Excel terminates after finding the value at
the 200k-th row. When it is set to True, i.e., approximate
match, Excel exhibits almost constant run time. We specu-
late that Excel performs additional optimizations, e.g., binary
search, for fast computation on sorted data. Unfortunately,
neither Calc nor Google Sheets perform any optimizations
and scan the entire dataset even after finding the value being
looked up, violating interactivity at 50k and 60k respectively.

3.4 Discussion
Table 2 summarizes the results of the BCT experiments, show-
ing the percentage of their advertised limits, i.e., 1M rows
for Excel and Calc and 5M cells for Google Sheets, at which
the corresponding system begins violating the interactivity
bound of 500ms. To obtain this percentage, we first identify
the the number of rows at which interactivity is violated. We
then divide that number of rows by 1M for desktop-based
spreadsheets. For Google Sheets, we compute the total num-
ber of cells, given the number of rows and then divide that
by 5M. Overall, despite performing computation in memory,
except for a handful of cases in Gray in Table 2, spreadsheet
systems fail to provide interactive responses for even small
datasets. The interactivity is even worse with embedded for-
mulae. While spreadsheet systems perform optimizations
such as visible window prioritization or binary search, these
methods are applied to bespoke conditions, resulting in high
latency for most operations.

Table 2: A summary of BCT experiments. For each experiment, we show at
what percentage of their advertised limits, Excel (E), Calc (C), and Google
Sheets (G), violate interactivity. A value of 100% means it wasn’t violated.

Formula-value Value-only
E (%) C (%) G (%) E (%) C (%) G (%)

Open 0.6 0.015 0.05 0.6 0.015 0.05
Sort 1 0.6 3.4 7 1 2.04

Conditional 100 8 17 100 100 100
Formatting

Filter 4 12 3.4 100 20 6.8
Pivot Table 5 34 3.4 5 33 6.8
COUNTIF 100 11 3.4 100 100 3.4
VLOOKUP × × × 100 5 23.8

We aim to uncover the causes for high latency in the
next section. We try to understand how spreadsheets sys-
tems store and organize datasets. Do they use indexing? Do
they optimize the layout of the data in-memory to allow
for efficient data access for computation? Next, spreadsheet
systems tend to perform poorly when an operation triggers
recomputation of embedded formulae. Therefore, we want

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1594

100K 200K 300K 400K 500K

Rows

0.000

0.003

0.006

0.009

0.012
T

im
e

(s
)

Sorted-FALSE
Sorted-TRUE

100K 200K 300K 400K 500K

Rows

0.0

1.5

3.0

4.5

6.0

T
im

e
(s

)

Sorted-FALSE
Sorted-TRUE

0 10K 20K 30K 40K 50K 60K 70K 80K 90K

Rows

0.00

0.15

0.30

0.45

0.60

T
im

e
(s

)

SORTED=FALSE
SORTED=TRUE

(a) Excel (b) Calc (c) Google Sheets
Figure 6: For VLOOKUP, while Excel terminates after finding a matching value, Calc and Google Sheets continue to scan the entire data. Excel optimizes approxi-
mate search (Sorted=True) via an efficient searching algorithm, e.g., binary search.

0 20K 40K 60K 80K 100K

Rows

0.0

1.5

3.0

4.5

6.0

T
im

e
(s

)

Absent Value Search
Present Value Search

10K 20K 30K 40K 50K 60K

Rows

0.0

2.5

5.0

7.5

10.0

T
im

e
(s

)

Absent Value Search
Present Value Search

0 5K 10K 15K 20K 25K 30K

Rows

0

3

6

9

12

T
im

e
(s

)

Absent Value Search
Present Value Search

(a) Excel (b) Calc (c) Google Sheets
Figure 7: A linear trend for Find and Replace indicates the absence of an index.

to understand how spreadsheet formula computation hap-
pens: How do spreadsheets perform recomputation after an
update? Do they reuse the results of the previous or other
computations to optimize a given formula?

4 OOT BENCHMARK
Next, we present results from the OOT benchmark that inves-
tigates whether spreadsheet systems adopt classic “database-
style” optimizations such as indexing, intelligent and com-
pact data layout, shared computation, eliminating redundant
computation, and incremental updates. We focus on Value-
only as we want to eliminate the effects of other embedded
formulae. We evaluate indexing-based optimization opportu-
nities for both querying and update operations, while focus-
ing on querying operations like aggregate, report, and lookup
for the rest, i.e., data layout, shared and incremental compu-
tation, since they can benefit most from these optimizations,
using COUNTIF, SUM, and VLOOKUP as representatives.

4.1 Indexing
We now explore whether spreadsheets maintain indexes on
the columns to facilitate faster computation for find-and-
replace. We have already seen earlier (Figure 6) that none
of the systems employ indexes for VLOOKUP, leading to linear
scaling with size; likewise, no system uses indexes for COUN-

TIF [29]. For find-and-replace, we wanted to see if spreadsheet
systems perform inverted indexing [35]. Find-and-replace
takes three inputs: an input range and two values, X and Y ,
and then scans the input range, one cell at a time, replacing
anyX with Y . For this experiment, we randomly insert a pre-
defined fixed search string X within one column and replace
X with another string Y . We run the following experiments:
(a) find a predefined string and replace it with another, and

(b) search for a nonexistent value. With an inverted index, we
expect the time complexity of this operation to be constant.
Observations. For all three systems, we see a linear trend
that violates interactivity at 10k, indicating the absence of in-
dexes. Even when searching a non-existent value, the search
time scales linearly. As the value doesn’t exist, replace is
skipped, leading to faster completion for a non-existent value.
Surprisingly, Google Sheets takes the same time in both cases.

4.2 Efficient and Intelligent Data Layout
Next, we wanted to see whether spreadsheets employ

an intelligent layout of data in memory. As most formulae
operate on contiguous cells, physically laying out cells near
each other on the sheet close to each other can benefit from
cache locality. For the first set of experiments, we use three
different sizes of Value-only: 100k, 300k, and 500k. For our
next experiment, we aim to evaluate the dataset sizes in
memory vs. that on disk, to evaluate how efficiently various
systems represent data in memory.
4.2.1 Range vs. column access. To assess how data is laid
out for various systems, we first run two experiments: range
access and random column access. For range access, we scan
a spreadsheet range and count the total number of cells in
the range, i.e., issue COUNT(A1:Sn), where n = 100k, 300k, 500k.
For random column access, we randomly select an entire
column between columns A to S , count the number of cells
in that column, e.g., COUNT(A1:An), and then add all the counts.
If a spreadsheet system employs a row-oriented layout, we
expect range access to be faster than column access. The
vice-versa is true if a column-oriented layout is used.
Observations. As shown in Figure 8a and Figure 8b, range
access is orders of magnitude faster than random column
access for both Excel (≈ 10X) and Google Sheets (≈ 11X),

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1595

100000 300000 500000
Rows

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
T

im
e

(s
)

Range Access
Random Column Access

20000 50000 80000
Rows

0

6

12

18

24

30

T
im

e
(s

)

Range Access
Random Column Access

100000 300000 500000
Rows

0

10

20

30

40

50

60

70

T
im

e
(s

)

Sequential Read
Random Read

(a) Excel (b) Google Sheets (c) Calc
Figure 8: While Both Excel and Google Sheets employ a row-oriented data layout (indicated by faster range access than random column access), Calc employs a
columnar data layout (indicated by faster sequential access than random access).

respectively, indicating a row-oriented data layout. However,
the execution time for both types of data access is similar in
Calc (see technical report [29]). To further verify that Calc
uses a column-oriented data layout, we employ a second set
of experiments, discussed next.

4.2.2 Sequential vs. Random access. Our second set of ex-
periments involve comparing sequential and random data
access. For the former, we scan a spreadsheet column (A)
from beginning to end while accessing the values of each
cell. For the latter, we randomly select a row and access the
cell corresponding to column A within that row. If a colum-
nar layout is used, sequential access would be faster than
random access due to cache locality.
Observations. The two experiments take almost the same
time for Excel and Google Sheets (see technical report [29]),
re-affirming a row-oriented data layout. However, as shown
in Figure 8c, sequential access is faster than random access
in Calc, indicating the presence of a columnar data layout.
We later learned from the Calc development team that Calc
employs a columnar MDDS data-store [19] which explains
better sequential data access performance. However, the
improvement in sequential access is not proportional to the
number of rows accessed.

4.2.3 Memory and Disk Consumption. So far, we have fo-
cused on performance; however, when discussing data layout,
it is also valuable to consider data size. Howmuch do datasets
“blow up” in memory relative to disk? In relational databases,
pages on disk are mapped into pages in the buffer pool, lead-
ing to memory consumption that is not just bounded by
the buffer pool size, but also occupies similar space as on
disk. We are aware that spreadsheet systems precompute
the cell-dependency graph and formula calculation chain—
both these data structures are loaded in memory along with
the spreadsheet impacting Formula-value datasets [20]; so
we compare Formula-value and Value-only datasets for this
experiment, and focus on desktop-based systems.
Observations. Figure 9 shows the disk and memory size
of the desktop-based systems for Value-only and Formula-
value. We discuss how we measured these quantities in our
technical report [29]. Excel’s in-memory representation is

100000 200000 300000 400000 500000
Rows

0

100

200

300

400

500

Si
ze

 (
M

B)

Value-Only
Formula-Value

100000 200000 300000 400000 500000
Rows

0

500

1000

1500

2000

2500

Si
ze

 (
M

B)

Value-Only
Formula-Value

(a) Excel Memory Consumption (b) Calc Memory Consumption

100000 200000 300000 400000 500000
Rows

0

10

20

30

40

50

60

Si
ze

 (
M

B)

Value-Only
Formula-Value

100000 200000 300000 400000 500000
Rows

0

5

10

15

20

25

30

Si
ze

 (
M

B)

Value-Only
Formula-Value

(c) Excel Disk Usage (d) Calc Disk usage
Figure 9: Formula-value datasets tend to consume more memory and disk
space than Value-only datasets due to the added optimizations, with the rep-
resentation in memory being 10 − 90× larger.

up to 10× that of the datasets on disk, while Calc’s represen-
tation is up to 87× for Formula-value, and 33× for Value-only.
Thus, in Calc, a 25MB spreadsheet can take more than 2GB
in memory, leading to Calc exhausting memory sooner than
Excel. For both systems, the relative size increase going from
disk to memory is larger for Formula-value than Value-only.

4.3 Shared Computation
In Section 3, we identified that recomputation of existing
formulae severely impacts the execution time of any new
formula. We want to understand why this recomputation is
so expensive. As many formulae reference the same region,
we wanted to see if these formulae share accesses, and if
possible, share computation of sub-expressions.
We conduct an experiment where we insert a formula

within each cell i of a column that computes the following:∑i
j=1Aj, i.e., the cumulative sum of cells of column A up to

row i (see Figure 10a) where 10k ≤ i ≤ 100k. One way to
compute this cumulative sum is the repeated computation
approach, using the SUM formula (see column B in Figure 10a)
which calculates the sum over the entire input range. An-
other efficient way, which we call the reusable computation
approach, is by adding the already computed cumulative
sum up to row i − 1 with the value of cell Ai . In a shared
computation scenario, we expect the time complexity of both

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1596

A B C
1 =SUM(A1:A1) =A1

2 =SUM(A1:A2) =A2+C1

3 =SUM(A1:A3) =A3+C2

4 =SUM(A1:A4) =A4+C3

n =SUM(A1:An) =An+C(n-1) 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Rows

0

40

80

120

160

T
im

e
(s

)

Repeated Computation
Resuable Computation

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Rows

0.0

0.8

1.6

2.4

3.2

4.0

T
im

e
(m

s)

Repeated Computation
Resuable Computation

0 5K 10K 15K 20K 25K 30K

Rows

0

6

12

18

24

30

T
im

e
(s

)

Repeated Computation
Reusable Computation

(a) Sample Data (b) Excel (c) Libre (d) GS
Figure 10: Expressing the same computation in two different ways (repeating the computation vs. reusing as much as possible) leads to substantial differences in
runtime complexity (quadratic vs. linear), indicating no sharing of computation.

100K 200K 300K 400K 500K

Rows

0.0

0.4

0.8

1.2

1.6

2.0

T
im

e
(s

)

Calc
Excel

0 10K 20K 30K 40K 50K 60K 70K 80K 90K

Rows

2.0

2.5

3.0

3.5

T
im

e
(s

)

Google Sheets

(a) Excel and Calc (b) Google Sheets
Figure 11: All three systems recompute the results of a COUNTIF formula
from scratch after a single cell update.

approaches (computing the same final result) to scale linearly
with the number of formulae (see column C in Figure 10a).
Observations. Figure 10 shows that, for all systems, re-
peated computation takes quadratic time as the number of
rows increases. The quadratic time can be attributed to the
increasing number of cell references. As i increases, the total
number of cell references of the repeated computation ap-
proach increases in a quadratic fashion, i.e.,

∑m
i=1 i = O(m2).

On the other hand, reusable computation exhibits an O(m).
This approach mimics a shared computation scenario: a col-
lection of formulae whose input range overlap can share
computation to optimize performance. However, it appears
current systems do not employ any such optimizations.
Redundant Computation. Our previous experiment revealed
a setting where shared computation was not used by spread-
sheet systems; the systems were not able to detect shar-
ing opportunities and use them to reduce computation. We
wanted to test an extreme (and very obvious to detect) ver-
sion of shared computation—one where the formulae being
computed were exactly the same. Unfortunately k identical
instances of the same COUNTIF formula took k times as much
time as one—thus even entirely redundant computation is
not eliminated by spreadsheet systems; see [29] for details.

4.4 Incremental Updates
Next, we wanted to see whether spreadsheet formulae can
efficiently handle updates to cells that the formulae operate
on. One approach can be to materialize the formula result,
compute the difference between the old and new value of a
cell and then update the results, analogous to incremental
view updates. We run this experiment on the following for-
mula “=COUNTIF(J2 : Jm, ”1”)”. For each dataset, we change
the value of the cell J2 from 1 to 0 and measure the time
for recomputation. If results are materialized or memoized,
formula recomputation would take near constant time.

Observations. Figure 11 shows that the run time for Excel
and Calc scales linearly with the number of rows—taking
O(m) time instead of O(1): thus these systems recompute the
formula from scratch rather than using incremental updates.
Google Sheets also does not employ incremental updates the
results as the run time varies with the number of the rows;
however, the result is quite noisy.
Single vs multiple formulae. To further demonstrate the im-
pact of updating a single cell, we run another experiment
where we vary the number of instances of the same formula
(N = 1, 100, 200, . . . , 1000) while changing the value of the
cell J2. We use the 500k Value-only dataset for the desktop-
based spreadsheets and 90k dataset for Google Sheets.

1 100 200 300 400 500 600 700 800 900 1000

Formula Instances

0

15

30

45

60

T
im

e
(s

)

Calc
Excel

0 200 400 600 800 1000

Instances

3.0

4.5

6.0

7.5

9.0

T
im

e
(s

)

Google Sheets

(a) Excel and Calc (b) Google Sheets
Figure 12: While recomputing a mere 100 instances of a COUNTIF formula
following a single cell update, all systems violate the interactivity bound.

Observations. Figure 12 shows that following a single cell
update, recalculation time scales linearly with the number of
formulae and violates the interactivity bound at 100 COUNTIF

formulae. As none of the spreadsheet systems share com-
putation and perform incremental updates, even a single
update can cause the spreadsheet to freeze [18].

5 CONCLUSION AND NEXT STEPS
We now summarize the findings from our experiments and
discuss ways to improve spreadsheet systems. We found that
even though spreadsheet systems operate on in-memory
data, they remain interactive for only a few operations through
bespoke optimizations. On the other hand, relational databases,
despite operating on disk-resident data, can achieve much
better performance for datasets of similar scale through
various optimizations. The OOT benchmark confirms that
spreadsheet systems do not perform any such optimizations.
Database-style Optimizations. Introducing “database-style”
optimizations within spreadsheet systems has the potential
to substantially improve the interactivity of spreadsheets.
However, there are some challenges as well.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1597

Indexing and Data Layout.As we saw in Section 4.1, there
are many settings where indexing could be valuable. We
could use existing formulae as aworkload to identify columns
that should be indexed. Indexing may be counterproductive
for spreadsheets where the raw data is being heavily edited,
and may be more useful during analysis. Indexing could also
be valuable for find-and-replace operations, but this would
require indexing strings across cells as opposed to just a
column. Note that indexing may be problematic if it explic-
itly uses or encodes the row or column number, because a
single change (adding a row) can lead to an update of the
entire index—but recent work has proposed a solution [1].
As Figure 9 indicates, there is a lot to be done in develop-
ing a more compact and workload-aware representation for
spreadsheets in-memory; understanding the trade-off be-
tween computational benefits of precomputed dependency
chains and memory consumption would be valuable. Com-
pact representations of the data itself would benefit not just
memory consumption but also computation.
Shared computation. It is clear from Section 4.3 that spread-
sheet systems need to go beyond cell-by-cell retrieval and
execution of formulae, actively identifying shared compu-
tation opportunities. These opportunities can be identified
when a formula is added (e.g., hashing subexpressions to see
if it is already present in the sheet in an evaluated form), or
in the background asynchronously. A simpler version is to
wait until a change triggers computation of a collection of
formulae, and then compute these formulae via an intelligent
schedule to maximize cache locality [2].
Incremental updates. For many aggregation operations,
the results can be recomputed using the current aggregate
and the “delta”, without requiring recomputation. For cases
such as AVGIF (i.e., compute average of cells satisfying a con-
dition) we need to maintain the count of cells in addition to
the average.
Detectingwhat needs recomputation.The Formula-value
datasets often performedmuchworse thanValue-only datasets
due to poor detection of what needs recomputation (see Sec-
tion 3). Identifying clear rules to determine whether a for-
mula needs recomputation would be the first challenge. For
example, when sorting an entire spreadsheet by row, any
formula with relative columnar references, e.g., “C1 = A1 + B1”,
are unaffected, while those with absolute references, e.g., “C1
= A1 + B1”, require recomputation.
Additional Optimizations. There are other potential optimiza-
tions from the literature that slightly change spreadsheet
semantics for increased interactivity. For example, spread-
sheet systems remain unresponsive during computation. One
can employ asynchrony to increase interactivity, covering
up in-progress computation with a progress bar [2]. Asyn-
chrony can be adapted to other operations like open and sort,
targeting the visible window, as is done in Google Sheets,
and proposed in prior work [27, 28]. We can also use a

database backend for efficient execution by translating for-
mulae into SQL queries [1, 5, 16], e.g., a join instead of a
collection of VLOOKUPs. Efficient execution can also happen
via approximation [7, 13], enabling early termination.
Discussion with Development Teams. After the first version
of this paper was posted online, we were approached by the
Calc and Google Sheets development teams who expressed
an interest in our takeaways.We initiated conversations with
both teams, and report some initial feedback below.
Data Layout. The Calc team confirmed the use of a colum-
nar data layout (Section 4.1): Calc has a columnar MDDS data
store for optimized data access, with SSE optimization [4] for
columnar SUMs. The Calc team acknowledged the trade-off
between performance and storage (Section 4.2.3), opting to
prioritize precomputation of dependency graphs and calcu-
lation chains over memory consumption.
Optimizing Computation. The Calc team confirmed the
lack of sharing and redundancy identification (Section 4.3),
noting that these optimizations can benefit computationally
heavy spreadsheets. The Google Sheets team had similar
observations, noting that such sheets often come from en-
terprise clients. Both teams expressed reservations with in-
cremental updates, specifically, precision issues resulting in
unpredictable (non-idempotent) results.
Benchmarking andArchitecture. TheGoogle Sheets team
identified a missing dimension in our benchmark: the ad-
dition/deletion of rows/columns, which we will address in
future releases. Moreover, Google Sheets pushes some com-
putation to the client-side browser. Our benchmark primar-
ily evaluates server-side performance; future benchmarks
should evaluate both. Since some computation happens at
the client side, the source code isn’t as “closed”, and can be
profiled on the client-side, e.g., via apps script logger and
cloud platform logger [12]. Calc benchmarks performance
using the open-source Callgrind Test Suite [15].
Overall, there is a plethora of interesting research directions
in making spreadsheet systems more effective at handling
large datasets. Our evaluation and the resulting insights can
benefit spreadsheet development, and also provide a starting
point for database researchers to contribute to the emergent
discipline of spreadsheet computation optimization.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
We also thank Richard Lin for help in re-running experiments for
Google Sheets. We acknowledge support from grants IIS-1652750
and IIS-1733878 awarded by the National Science Foundation, grant
W911NF-18-1-0335 awarded by the Army, and funds from Adobe,
Capital One, Facebook, Google, Siebel Energy Institute, and the
Toyota Research Institute. The content is solely the responsibility
of the authors and does not necessarily represent the official views
of the funding agencies and organizations.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1598

REFERENCES
[1] Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou, Kevin Chang,

and Aditya Parameswaran. 2018. Towards a holistic integration of
spreadsheets with databases: A scalable storage engine for presenta-
tional data management. In 2018 IEEE 34th International Conference on
Data Engineering (ICDE). IEEE, 113–124.

[2] Mangesh Bendre, Tana Wattanawaroon, Kelly Mack, Kevin Chang,
and Aditya Parameswaran. 2019. Anti-Freeze for Large and Complex
Spreadsheets: Asynchronous Formula Computation. In Proceedings of
the 2019 International Conference on Management of Data (SIGMOD
’19). 1277–1294.

[3] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[4] Intel Corportation. 2001. IA-32 Intel Architecture software developer’s
manual. Intel Corportation 127 (2001).

[5] Jácome Cunha, João Saraiva, and Joost Visser. 2009. From spread-
sheets to relational databases and back. In Proceedings of the 2009 ACM
SIGPLAN workshop on Partial evaluation and program manipulation.
179–188.

[6] Conor Cunningham, César A Galindo-Legaria, and Goetz Graefe. 2004.
PIVOT and UNPIVOT: Optimization and Execution Strategies in an
RDBMS. In Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30. VLDB Endowment, 998–1009.

[7] Minos N Garofalakis and Phillip B Gibbons. 2001. Approximate Query
Processing: Taming the TeraBytes.. In VLDB. 343–352.

[8] Google. 2020. G Suite. (2020). Retrieved April 8, 2020 from https:
//gsuite.google.com/

[9] Google. 2020. Google Apps Script. (2020). Retrieved April 8, 2020 from
https://developers.google.com/apps-script

[10] Google. 2020. Google Sheets scale. (2020). Retrieved April 8, 2020
from https://developers.google.com/drive/answer/37603

[11] Google. 2020. Layout thrashing. (2020). Retrieved April 8, 2020
from https://developers.google.com/web/fundamentals/performance/
rendering/avoid-large-complex-layouts-and-layout-thrashing

[12] Google. 2020. Logging GAS. (2020). Retrieved April 8, 2020 from
https://developers.google.com/apps-script/guides/logging

[13] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online
aggregation. In Acm Sigmod Record, Vol. 26. ACM, 171–182.

[14] Scott T Leutenegger and Daniel Dias. 1993. A modeling study of the
TPC-C benchmark. ACM Sigmod Record 22, 2 (1993), 22–31.

[15] LibreOffice. 2020. Callfrind: Calc Profiler. (2020). Retrieved April 8,
2020 from https://perf.libreoffice.org

[16] Bin Liu and HV Jagadish. 2009. A spreadsheet algebra for a direct
data manipulation query interface. In 2009 IEEE 25th International
Conference on Data Engineering. IEEE, 417–428.

[17] Zhicheng Liu and Jeffrey Heer. 2014. The effects of interactive latency
on exploratory visual analysis. IEEE transactions on visualization and
computer graphics 20, 12 (2014), 2122–2131.

[18] Kelly Mack, John Lee, Kevin Chang, Karrie Karahalios, and Aditya
Parameswaran. 2018. Characterizing scalability issues in spreadsheet
software using online forums. In Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, CS04.

[19] MDDS. 2020. Multi-dimensional data structures. (2020). Retrieved
April 8, 2020 from https://gitlab.com/mdds/mdds

[20] Microsoft. 2020. Excel calculation engine. (2020). Retrieved April 8,
2020 from https://docs.microsoft.com/en-us/office/client-developer/
excel/excel-recalculation/

[21] Microsoft. 2020. Excel functions list. (2020). Retrieved April 8,
2020 from https://support.office.com/en-us/article/Excel-functions-
alphabetical-b3944572-255d-4efb-bb96-c6d90033e188

[22] Microsoft. 2020. Excel limit. (2020). https://support.office.com/en-
us/article/excel-specifications-and-limits-1672b34d-7043-467e-8e27-
269d656771c3

[23] Microsoft. 2020. Excel threading. (2020). Retrieved April 8, 2020
from https://docs.microsoft.com/en-us/office/client-developer/excel/
multithreaded-recalculation-in-excel

[24] Microsoft. 2020. Excel user statistics. (2020). Retrieved April
8, 2020 from https://enterprise.microsoft.com/en-gb/articles/roles/
finance-leader/how-finance-leaders-can-drive-performance/

[25] Microsoft. 2020. Office 365. (2020). Retrieved April 8, 2020 from
https://www.office.com/

[26] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J
DeWitt, SamuelMadden, andMichael Stonebraker. 2009. A comparison
of approaches to large-scale data analysis. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data. ACM,
165–178.

[27] Vijayshankar Raman et al. 1999. Scalable Spreadsheets for Interactive
Data Analysis. In ACM SIGMOD Workshop on DMKD.

[28] Vijayshankar Raman, Bhaskaran Raman, and Joseph M Hellerstein.
2000. Online dynamic reordering. The VLDB Journal 9, 3 (2000),
247–260.

[29] Technical Report. 2020. Benchmarking Spreadsheet Systems. (2020).
Retrieved April 8, 2020 from http://srahman7.web.engr.illinois.edu/
papers/benchmarking_spreadsheets_techreport.pdf

[30] Google user statistics. 2020. Excel vs. Google Sheets usage—nature
and numbers. (2020). https://medium.com/grid-spreadsheets-run-
the-world/excel-vs-google-sheets-usage-nature-and-numbers-
9dfa5d1cadbd/

[31] Wikipedia. 2020. LibreOffice Calc. (2020). Retrieved April 8, 2020 from
https://en.wikipedia.org/wiki/LibreOffice_Calc/

[32] Wikipedia. 2020. List of spreadsheet softwares. (2020). Retrieved
April 8, 2020 from https://en.wikipedia.org/wiki/List_of_spreadsheet_
software

[33] Wikipedia. 2020. OpenDocument format. (2020). Retrieved April 8,
2020 from https://en.wikipedia.org/wiki/OpenDocument

[34] Wikipedia. 2020. XLSM file. (2020). Retrieved April 8,
2020 from https://en.wikipedia.org/wiki/List_of_Microsoft_Office_
filename_extensions

[35] Justin Zobel and Alistair Moffat. 2006. Inverted files for text search
engines. ACM computing surveys (CSUR) 38, 2 (2006), 6.

Research 17: Data Exploration and Preparation SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1599

https://gsuite.google.com/
https://gsuite.google.com/
https://developers.google.com/apps-script
https://developers.google.com/drive/answer/37603
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://developers.google.com/web/fundamentals/performance/rendering/avoid-large-complex-layouts-and-layout-thrashing
https://developers.google.com/apps-script/guides/logging
https://perf.libreoffice.org
https://gitlab.com/mdds/mdds
https://docs.microsoft.com/en-us/office/client-developer/excel/excel-recalculation/
https://docs.microsoft.com/en-us/office/client-developer/excel/excel-recalculation/
https://support.office.com/en-us/article/Excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188
https://support.office.com/en-us/article/Excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188
https://support.office.com/en-us/article/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.office.com/en-us/article/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://support.office.com/en-us/article/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://docs.microsoft.com/en-us/office/client-developer/excel/multithreaded-recalculation-in-excel
https://docs.microsoft.com/en-us/office/client-developer/excel/multithreaded-recalculation-in-excel
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://enterprise.microsoft.com/en-gb/articles/roles/finance-leader/how-finance-leaders-can-drive-performance/
https://www.office.com/
http://srahman7.web.engr.illinois.edu/papers/benchmarking_spreadsheets_techreport.pdf
http://srahman7.web.engr.illinois.edu/papers/benchmarking_spreadsheets_techreport.pdf
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-numbers-9dfa5d1cadbd/
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-numbers-9dfa5d1cadbd/
https://medium.com/grid-spreadsheets-run-the-world/excel-vs-google-sheets-usage-nature-and-numbers-9dfa5d1cadbd/
https://en.wikipedia.org/wiki/LibreOffice_Calc/
https://en.wikipedia.org/wiki/List_of_spreadsheet_software
https://en.wikipedia.org/wiki/List_of_spreadsheet_software
https://en.wikipedia.org/wiki/OpenDocument
https://en.wikipedia.org/wiki/List_of_Microsoft_Office_filename_extensions
https://en.wikipedia.org/wiki/List_of_Microsoft_Office_filename_extensions

	Abstract
	1 Introduction
	2 Benchmark Setup
	2.1 Spreadsheet Systems Overview
	2.2 Taxonomy of Spreadsheet Operations
	2.3 Dataset
	2.4 Settings

	3 BCT Benchmark
	3.1 Data Load Operations
	3.2 Update Operations
	3.3 Query Operations
	3.4 Discussion

	4 OOT Benchmark
	4.1 Indexing
	4.2 Efficient and Intelligent Data Layout
	4.3 Shared Computation
	4.4 Incremental Updates

	5 Conclusion and Next Steps
	Acknowledgments
	References

